Python Encyclopedia for Academics
  • Course Outline
  • Artificial Intelligence
    • Data Science Foundation
      • Python Programming
        • Introduction and Basics
          • Variables
          • Print Function
          • Input From User
          • Data Types
          • Type Conversion
        • Operators
          • Arithmetic Operators
          • Relational Operators
          • Bitwise Operators
          • Logical Operators
          • Assignment Operators
          • Compound Operators
          • Membership Operators
          • Identity Operators
      • Numpy
        • Vectors, Matrix
        • Operations on Matrix
        • Mean, Variance, and Standard Deviation
        • Reshaping Arrays
        • Transpose and Determinant of Matrix
      • Pandas
        • Series and DataFrames
        • Slicing, Rows, and Columns
        • Operations on DataFrames
        • Different wayes to creat DataFrame
        • Read, Write Operations with CSV files
      • Matplotlib
        • Graph Basics
        • Format Strings in Plots
        • Label Parameters, Legend
        • Bar Chart, Pie Chart, Histogram, and Scatter Plot
  • Machine Learning Algorithms
    • Regression Analysis In ML
      • Regression Analysis in Machine Learning
      • Proof of Linear Regression Formulas
      • Simple Linear Regression Implementation
      • Multiple Linear Regression
      • Advertising Dataset Example
      • Bike Sharing Dataset
      • Wine Quality Dataset
      • Auto MPG Dataset
    • Classification Algorithms in ML
      • Proof of Logistic Regression
      • Simplified Mathematical Proof of SVM
      • Iris Dataset
  • Machine Learning Laboratory
    • Lab 1: Titanic Dataset
      • Predicting Survival on the Titanic with Machine Learning
    • Lab 2: Dow Jones Index Dataset
      • Dow Jones Index Predictions Using Machine Learning
    • Lab 3: Diabetes Dataset
      • Numpy
      • Pandas
      • Matplotlib
      • Simple Linear Regression
      • Simple Non-linear Regression
      • Performance Matrix
      • Preprocessing
      • Naive Bayes Classification
      • K-Nearest Neighbors (KNN) Classification
      • Decision Tree & Random Forest
      • SVM Classifier
      • Logistic Regression
      • Artificial Neural Network
      • K means Clustering
    • Lab 4: MAGIC Gamma Telescope Dataset
      • Classification in ML-MAGIC Gamma Telescope Dataset
    • Lab 5: Seoul Bike Sharing Demand Dataset
      • Regression in ML-Seoul Bike Sharing Demand Dataset
    • Lab 6: Medical Cost Personal Datasets
      • Predict Insurance Costs with Linear Regression in Python
    • Lab 6: Predict The S&P 500 Index With Machine Learning And Python
      • Predict The S&P 500 Index With Machine Learning And Python
  • Artificial Neural Networks
    • Biological Inspiration vs. Artificial Neurons
    • Review linear algebra and calculus essentials for ANNs
    • Activation Function
  • Mathematics
    • Pre-Calculus
      • Factorials
      • Roots of Polynomials
      • Complex Numbers
      • Polar Coordinates
      • Graph of a Function
    • Calculus 1
      • Limit of a Function
      • Derivative of Function
      • Critical Points
      • Indefinite Integrals
  • Calculus 2
    • 3D Coordinates and Vectors
    • Vectors and Vector Operations
    • Lines and Planes in Space (3D)
    • Partial Derivatives
    • Optimization Problems (Maxima/Minima) in Multivariable Functions
    • Gradient Vectors
  • Engineering Mathematics
    • Laplace Transform
  • Electrical & electronics Eng
    • Resistor
      • Series Resistors
      • Parallel Resistors
    • Nodal Analysis
      • Example 1
      • Example 2
    • Transient State
      • RC Circuit Equations in the s-Domain
      • RL Circuit Equations in the s-Domain
      • LC Circuit Equations in the s-Domain
      • Series RLC Circuit with DC Source
  • Computer Networking
    • Fundamental
      • IPv4 Addressing
      • Network Diagnostics
  • Cybersecurity
    • Classical Ciphers
      • Caesar Cipher
      • Affine Cipher
      • Atbash Cipher
      • Vigenère Cipher
      • Gronsfeld Cipher
      • Alberti Cipher
      • Hill Cipher
Powered by GitBook
On this page
  • 1. What Is a Complex Number?
  • 2. Basic Operations
  • 3. Modulus of a Complex Number
  • 4. Complex Conjugate
  • 5. Polar Form of a Complex Number
  • 6. Euler's Formula
  • 7. Convert Between Cartesian and Polar Forms
  • 8. Powers and Roots
  • 9. Plotting Complex Numbers (Optional Visualization)
  • Summary Cheat Sheet
  • Keywords
  1. Mathematics
  2. Pre-Calculus

Complex Numbers

Nerd Cafe

1. What Is a Complex Number?

Definition (Mathematics)

A complex number is a number of the form:

z=a+biz=a+biz=a+bi

Where:

  • a is the real part,

  • b is the imaginary part,

  • i is the imaginary unit where:

i2=−1i^{2}=-1i2=−1

Example:

z=3+4iz=3+4iz=3+4i
  • Real part: 3

  • Imaginary part: 4

Python Representation

z = complex(3, 4)
print("Complex Number:", z)
print("Real Part:", z.real)
print("Imaginary Part:", z.imag)

Output:

Complex Number: (3+4j)
Real Part: 3.0
Imaginary Part: 4.0

2. Basic Operations

Addition

(3+4i)+(1+2i)=(3+1)+(4+2)i=4+6i(3+4i)+(1+2i)=(3+1)+(4+2)i=4+6i(3+4i)+(1+2i)=(3+1)+(4+2)i=4+6i

Subtraction

(3+4i)−(1+2i)=(3−1)+(4−2)i=2+2i(3+4i)−(1+2i)=(3−1)+(4−2)i=2+2i(3+4i)−(1+2i)=(3−1)+(4−2)i=2+2i

Multiplication

(3+4i)(1+2i)=3+6i+4i+8i2=3+10i+8(−1)=−5+10i(3+4i)(1+2i)=3+6i+4i+8i^{2}=3+10i+8\left( -1 \right)=-5+10i(3+4i)(1+2i)=3+6i+4i+8i2=3+10i+8(−1)=−5+10i

Division

3+4i1+2i=3+4i1+2i×1−2i1−2i=11−2i5\frac{3+4i}{1+2i}=\frac{3+4i}{1+2i}\times \frac{1-2i}{1-2i}=\frac{11-2i}{5}1+2i3+4i​=1+2i3+4i​×1−2i1−2i​=511−2i​

Python Operations

z1 = complex(3, 4)
z2 = complex(1, 2)

print("Addition:", z1 + z2)
print("Subtraction:", z1 - z2)
print("Multiplication:", z1 * z2)
print("Division:", z1 / z2)

Output:

Addition: (4+6j)
Subtraction: (2+2j)
Multiplication: (-5+10j)
Division: (2.2-0.4j)

3. Modulus of a Complex Number

Formula:

∣z∣=a2+b2\left| z \right|=\sqrt{a^{2}+b^{2}}∣z∣=a2+b2​

Example:

∣3+4i∣=32+42=5\left| 3+4i \right|=\sqrt{3^{2}+4^{2}}=5∣3+4i∣=32+42​=5

Python:

import math

z = complex(3, 4)
modulus = abs(z)
print("Modulus of", z, "is", modulus)

Output:

Modulus of (3+4j) is 5.0

4. Complex Conjugate

Definition:

The conjugate of

z=a+biz=a+biz=a+bi

is

zˉ=a−bi\bar{z}=a-bizˉ=a−bi

Python:

z = complex(3, 4)
conjugate = z.conjugate()
print("Conjugate of", z, "is", conjugate)

Output:

Conjugate of (3+4j) is (3-4j)

5. Polar Form of a Complex Number

Formula:

Convert

z=a+biz=a+biz=a+bi

into:

z=r(cosθ+isinθ)=rcisθz=r(cos\theta+isin\theta)=rcis\thetaz=r(cosθ+isinθ)=rcisθ

Where:

r=∣z∣=a2+b2θ=arg(z)=tan−1(ba)\begin{matrix} r=\left| z \right|=\sqrt{a^{2}+b^{2}} \\ \\ \theta=arg\left( z \right)=tan^{-1}\left( \frac{b}{a} \right) \end{matrix}r=∣z∣=a2+b2​θ=arg(z)=tan−1(ab​)​

Python:

import cmath

z = complex(3, 4)
r, theta = abs(z), cmath.phase(z)

print("Modulus (r):", r)
print("Angle (θ in radians):", theta)

Output:

Modulus (r): 5.0
Angle (θ in radians): 0.9272952180016122

6. Euler's Formula

eiθ=cosθ+isinθe^{i\theta}=cosθ+isinθeiθ=cosθ+isinθ

So:

z=reiθz=re^{i\theta}z=reiθ

7. Convert Between Cartesian and Polar Forms

Python:

Convert to Polar:

z = complex(1, 1)
r, theta = cmath.polar(z)
print("Polar Form: (r =", r, ", theta =", theta, ")")

Output:

Polar Form: (r = 1.4142135623730951 , theta = 0.7853981633974483 )

Convert to Rectangular:

z = cmath.rect(r, theta)
print("Rectangular Form:", z)

Output:

Rectangular Form: (1.0000000000000002+1.0000000000000002j)

8. Powers and Roots

Power:

zn=[reiθ]n=[r(cosθ+isinθ)]n=rncis(nθ)z^{n}=\left[ re^{i\theta} \right]^{n}=\left[ r\left( cos\theta+isin\theta \right) \right]^{n}=r^{n}cis\left( n\theta \right)zn=[reiθ]n=[r(cosθ+isinθ)]n=rncis(nθ)

n-th Roots:

zn=rcis(θ)n=rncis(θ+2kπn);k=0,1,2,...,(n−1)\sqrt[n]{z}=\sqrt[n]{rcis(\theta)}=\sqrt[n]{r}cis\left( \frac{\theta+2k\pi}{n} \right);k=0,1,2,...,\left( n-1 \right)nz​=nrcis(θ)​=nr​cis(nθ+2kπ​);k=0,1,2,...,(n−1)

Python (Using cmath):

# z^n
z = complex(2, 3)
power = z**3
print("z^3 =", power)

# Square root
root = cmath.sqrt(z)
print("√z =", root)

Output:

z^3 = (-46+9j)
√z = (1.6741492280355401+0.8959774761298381j)

9. Plotting Complex Numbers (Optional Visualization)

import matplotlib.pyplot as plt

z = complex(3, 4)
plt.plot([0, z.real], [0, z.imag], marker='o')
plt.text(z.real, z.imag, f'{z}', fontsize=12)
plt.axhline(0, color='gray', linestyle='--')
plt.axvline(0, color='gray', linestyle='--')
plt.xlabel('Real')
plt.ylabel('Imaginary')
plt.grid(True)
plt.title('Complex Number on the Complex Plane')
plt.axis('equal')
plt.show()

Output:

Summary Cheat Sheet

Concept
Python Function

Complex number

complex(a, b)

Real part

z.real

Imaginary part

z.imag

Conjugate

z.conjugate()

Modulus

abs(z)

Phase/angle

cmath.phase(z)

Polar form

cmath.polar(z)

Rectangular form

cmath.rect(r, θ)

Square root

cmath.sqrt(z)

Plotting

matplotlib

Keywords

complex numbers, imaginary numbers, real part, imaginary part, complex arithmetic, addition, subtraction, multiplication, division, modulus, complex conjugate, polar form, rectangular form, Euler’s formula, Python complex type, cmath module, plotting complex numbers, argument of complex number, powers of complex numbers, roots of complex numbers, nerd cafe

PreviousRoots of PolynomialsNextPolar Coordinates

Last updated 2 months ago