Critical Points

Nerd Cafe

Mathematical Background

  • Critical points occur where the derivative of a function equals zero or is undefined.

  • These points help identify where the function might have local maxima, minima, or points of inflection.

Example 1:

f(x)=x2f(x)=x^{2}
  • Derivative:

fˊ(x)=2xf\acute{}(x)=2x
  • Set derivative to zero:

2x=0x=02x=0\Rightarrow x=0
  • Critical Point:

x=0x=0
  • Python Code:

  • Output:

Example 2:

f(x)=x33xf(x)=x^{3}-3x
  • Derivative:

fˊ(x)=3x23f\acute{}(x)=3x^{2}-3
  • Solve:

3x23=0x=±13x^{2}-3=0\Rightarrow x=\pm 1
  • Python Code:

  • Output:

Example 3:

f(x)=1xf(x)=\frac{1}{x}
  • Derivative:

fˊ(x)=1x2f\acute{}(x)=-\frac{1}{x^{2}}

This is never zero, but undefined at x=0.

  • Python Code:

  • Output:

Example 4:

f(x)=x44x2f(x)=x^{4}-4x^{2}
  • Derivative:

fˊ(x)=4x38x=4x(x22)x=0,x=±2f\acute{}(x)=4x^{3}-8x=4x\left( x^{2}-2 \right)\Rightarrow x=0,x=\pm \sqrt{2}
  • Python Code:

  • Output:

Example 5:

f(x)=xf(x)=\sqrt{x}
  • Derivative:

fˊ(x)=12xf\acute{}(x)=\frac{1}{2\sqrt{x}}
  • Python Code:

  • Output:

Example 6:

f(x)=x.exf(x)=x.e^{x}
  • Derivative:

fˊ(x)=ex+x.ex=ex(1+x)(1+x)=0x=1f\acute{}(x)=e^{x}+x.e^{x}=e^{x}\left( 1+x \right)\Rightarrow \left( 1+x \right)=0\Rightarrow x=-1
  • Python Code:

  • Output:

Example 7:

f(x)=ln(x)f(x)=ln\left( x \right)
  • Derivative:

fˊ(x)=1xnever zero,undefinedatx=0f\acute{}(x)=\frac{1}{x}\Rightarrow never \: zero, \: undefined \: \: at \: \: x=0
  • Python Code:

  • Output:

Example 8:

f(x)=sin(x)f(x)=sin\left( x \right)
  • Derivative:

fˊ(x)=cos(x)cos(x)=0x=π2+nπf\acute{}(x)=cos\left( x \right)\Rightarrow cos\left( x \right)=0\Rightarrow x=\frac{\pi}{2}+n\pi
  • Python Code:

  • Output:

Keywords

critical points, calculus, derivatives, local maxima, local minima, inflection points, turning points, first derivative, second derivative, optimization, increasing function, decreasing function, concavity, stationary points, curve sketching, derivative test, extrema, function analysis, symbolic computation, Python SymPy, nerd cafe

Last updated