To solve the circuit in Fig. below using Nodal Analysis, we will calculate the voltage at each node step by step. Letβs start by identifying the steps and equations involved.
1. Steps for Nodal Analysis:
Assign Node Voltages:
Label the node voltages as π1 , π2 , π3 , π4 and π0 (ground node).
π0 is already set to 0 V as the reference.
π4 is equal to (-8) V.
Apply Kirchhoff's Current Law (KCL):
At each node, the sum of currents leaving the node equals zero.
Write Equations for Each Node:
Using Ohmβs Law (πΌ=π/π
).
2. Solve the System of Equations:
Use substitution or matrix methods to find the node voltages.
3. Circuit Breakdown
Known Values:
Voltage sources: π1 =8V, π2 =8V.
Resistances: π
1 =4Ξ©, π
2 =6Ξ©, π
3 =7Ξ©, π
4 =9Ξ©, π
5 =10Ξ©.
Current sources: πΌ1 =5A, πΌ2 =6A.
4. KCL Equations
Node 1 (π1 ):
Node 2 (π2 ):
V 2 β 8 4 β 5 + V 2 6 + V 2 β V 3 7 = 0 \frac{V_{2}-8}{4}-5+\frac{V_{2}}{6}+\frac{V_{2}-V_{3}}{7}=0 4 V 2 β β 8 β β 5 + 6 V 2 β β + 7 V 2 β β V 3 β β = 0 Node 3 (π3 ):
V 3 β V 2 7 + V 3 β ( β 8 ) 9 + V 3 10 + 6 = 0 \frac{V_{3}-V_{2}}{7}+\frac{V_{3}-(-8)}{9}+\frac{V_{3}}{10}+6=0 7 V 3 β β V 2 β β + 9 V 3 β β ( β 8 ) β + 10 V 3 β β + 6 = 0 Node 4 (V4 ):
V 4 = β 8 V_{4}=-8 V 4 β = β 8 4. Simplified Equations:
Node 2 (Simplified):
V 2 ( 1 4 + 1 + + 1 7 ) + V 3 ( β 1 7 ) = 7 β V 2 ( 0.5595238 ) + V 3 ( β 0.142857 ) = 7 V_{2}\left( \frac{1}{4}+\frac{1}{+}+\frac{1}{7} \right)+V_{3}\left( -\frac{1}{7} \right)=7\Rightarrow V_{2}\left( 0.5595238 \right)+V_{3}\left( -0.142857 \right)=7 V 2 β ( 4 1 β + + 1 β + 7 1 β ) + V 3 β ( β 7 1 β ) = 7 β V 2 β ( 0.5595238 ) + V 3 β ( β 0.142857 ) = 7 The equations can be expressed in matrix form as:
[ 0.5595238 β 0.142857 β 0.142857 0.353968 ] [ V 2 V 3 ] = [ 7 β 6.8888 ] \begin{bmatrix}
0.5595238 & -0.142857 \\
-0.142857 & 0.353968
\end{bmatrix}\begin{bmatrix}
V_{2} \\ V_{3}
\end{bmatrix}=\begin{bmatrix}
7 \\ -6.8888
\end{bmatrix} [ 0.5595238 β 0.142857 β β 0.142857 0.353968 β ] [ V 2 β V 3 β β ] = [ 7 β 6.8888 β ] 6. Python code
Hereβs the Python code to solve the node voltages using NumPy for matrix operations:
Copy import numpy as np
# Coefficient matrix
A = np.array([
[0.5595238, -0.142857],
[-0.142857, 0.353968]
])
# Constant matrix
B = np.array([7, -6.8888])
# Solve the linear system Ax = B
solution = np.linalg.solve(A, B)
# Print the results
V2, V3 = solution
print(f"V2 = {V2}")
print(f"V3 = {V3}")
Output
Copy V2 = 8.408113665230585
V3 = -16.06823810662589
Keywords
nodal analysis
, kirchhoff's current law
, KCL
, circuit analysis
, node voltage method
, electrical engineering
, electronic circuits
, DC circuits
, AC circuits
, linear circuits
, circuit solving techniques
, voltage nodes
, current sources
, resistive circuits
, mesh analysis
, supernode
, circuit theory
, circuit equations
, Ohm's law
, engineering education