Variables
Nerd Cafe
What is a Variable?
A variable is a name that refers to a value stored in memory. Think of it as a box with a label that stores data. In machine learning, variables help us manage data, features, models, and results.
1. Declaring Variables
x = 5
name = "Mr Nerd"
price = 19.99
is_active = True
Practical Notes:
x
is an integername
is a stringprice
is a floatis_active
is a boolean
No need to declare the type in Python — it figures it out!
2. Variable Naming Rules (Very Important in ML Projects)
# Valid
data = [1, 2, 3]
learning_rate = 0.01
model_name = "LinearRegression"
# Invalid
# 1model = "wrong" ❌ Starts with a number
# learning-rate = 0.01 ❌ Hyphen not allowed
Best Practices (PEP8 Style Guide for ML Code):
Use lowercase with underscores:
train_data
,test_accuracy
Be descriptive:
input_vector
instead ofiv
Avoid keywords:
class
,def
, etc.
3. Updating Variables
accuracy = 0.85
accuracy = accuracy + 0.05 # Now it's 0.90
Shortcuts:
accuracy += 0.05 # same as above
4. Data Types in Machine Learning
# Common data types
integer_example = 10 # int
float_example = 3.14 # float
string_example = "NeuralNet" # str
boolean_example = False # bool
list_example = [1, 2, 3] # list
tuple_example = (1, 2) # tuple
dict_example = {"lr": 0.01} # dict
5. Practical Use in ML:
features = [5.1, 3.5, 1.4, 0.2] # input features (list of floats)
label = "Iris-setosa" # target label (string)
params = {"learning_rate": 0.01, "epochs": 100} # dictionary for config
6. Multiple Assignments
x, y, z = 1, 2, 3
# Use this for splitting ML data
train_data, test_data = [1, 2], [3, 4]
7. Constants (Not Built-in, But You Can Use UPPERCASE)
LEARNING_RATE = 0.01
EPOCHS = 100
Tip: Use ALL_CAPS to indicate values that should not change.
8. Type Checking (Important in Debugging ML Code)
data = [1, 2, 3]
print(type(data)) # <class 'list'>
9. Variable Scope (Global vs Local)
score = 90 # global
def update_score():
score = 100 # local to this function
print("Inside function:", score)
update_score()
print("Outside function:", score)
Output:
Inside function: 100
Outside function: 90
Variables inside functions do not change the global ones unless specified.
10. Dynamic Typing
Python is dynamically typed — you can reassign variables to different types.
x = 10 # x is int
x = "hi" # now x is str
Be careful in ML code! Accidentally changing data types can cause bugs.
11. Example in a Mini Machine Learning Context
# Step 1: Define hyperparameters
LEARNING_RATE = 0.01
EPOCHS = 100
# Step 2: Data
features = [5.1, 3.5, 1.4, 0.2]
label = "Iris-setosa"
# Step 3: Simulate a training log
accuracy = 0.75
accuracy += 0.05 # New accuracy
print(f"Final accuracy: {accuracy}")
12. Using Variables in NumPy (Essential for ML)
import numpy as np
x = np.array([1, 2, 3])
w = np.array([0.4, 0.3, 0.2])
bias = 0.5
# Linear combination
y = np.dot(x, w) + bias
print("Output:", y)
Output:
Output: 2.1
Summary Table
Basic variable
x = 5
Auto-detects type
Multiple assign
x, y = 1, 2
Split values
Type check
type(x)
Debugging help
Update value
x += 1
Shortcut for updating
Store parameters
params = {"lr": 0.01}
Common in ML projects
Constants
EPOCHS = 100
Use ALL_CAPS
Keywords
variables in python
, python variable types
, declaring variables
, variable naming rules
, python data types
, python for machine learning
, python constants
, variable scope
, python assignment
, python beginner guide
, python tutorial
, python variable examples
, variable best practices
, python dynamic typing
, python debugging
, python multiple assignment
, machine learning python code
, python type checking
, python variables cheat sheet
, python variable use in ML
, nerd cafe
Last updated