Python Encyclopedia for Academics
  • Course Outline
  • Artificial Intelligence
    • Data Science Foundation
      • Python Programming
        • Introduction and Basics
          • Variables
          • Print Function
          • Input From User
          • Data Types
          • Type Conversion
        • Operators
          • Arithmetic Operators
          • Relational Operators
          • Bitwise Operators
          • Logical Operators
          • Assignment Operators
          • Compound Operators
          • Membership Operators
          • Identity Operators
      • Numpy
        • Vectors, Matrix
        • Operations on Matrix
        • Mean, Variance, and Standard Deviation
        • Reshaping Arrays
        • Transpose and Determinant of Matrix
      • Pandas
        • Series and DataFrames
        • Slicing, Rows, and Columns
        • Operations on DataFrames
        • Different wayes to creat DataFrame
        • Read, Write Operations with CSV files
      • Matplotlib
        • Graph Basics
        • Format Strings in Plots
        • Label Parameters, Legend
        • Bar Chart, Pie Chart, Histogram, and Scatter Plot
  • Machine Learning Algorithms
    • Regression Analysis In ML
      • Regression Analysis in Machine Learning
      • Proof of Linear Regression Formulas
      • Simple Linear Regression Implementation
      • Multiple Linear Regression
      • Advertising Dataset Example
      • Bike Sharing Dataset
      • Wine Quality Dataset
      • Auto MPG Dataset
    • Classification Algorithms in ML
      • Proof of Logistic Regression
      • Simplified Mathematical Proof of SVM
      • Iris Dataset
  • Machine Learning Laboratory
    • Lab 1: Titanic Dataset
      • Predicting Survival on the Titanic with Machine Learning
    • Lab 2: Dow Jones Index Dataset
      • Dow Jones Index Predictions Using Machine Learning
    • Lab 3: Diabetes Dataset
      • Numpy
      • Pandas
      • Matplotlib
      • Simple Linear Regression
      • Simple Non-linear Regression
      • Performance Matrix
      • Preprocessing
      • Naive Bayes Classification
      • K-Nearest Neighbors (KNN) Classification
      • Decision Tree & Random Forest
      • SVM Classifier
      • Logistic Regression
      • Artificial Neural Network
      • K means Clustering
    • Lab 4: MAGIC Gamma Telescope Dataset
      • Classification in ML-MAGIC Gamma Telescope Dataset
    • Lab 5: Seoul Bike Sharing Demand Dataset
      • Regression in ML-Seoul Bike Sharing Demand Dataset
    • Lab 6: Medical Cost Personal Datasets
      • Predict Insurance Costs with Linear Regression in Python
    • Lab 6: Predict The S&P 500 Index With Machine Learning And Python
      • Predict The S&P 500 Index With Machine Learning And Python
  • Artificial Neural Networks
    • Biological Inspiration vs. Artificial Neurons
    • Review linear algebra and calculus essentials for ANNs
    • Activation Function
  • Mathematics
    • Pre-Calculus
      • Factorials
      • Roots of Polynomials
      • Complex Numbers
      • Polar Coordinates
      • Graph of a Function
    • Calculus 1
      • Limit of a Function
      • Derivative of Function
      • Critical Points
      • Indefinite Integrals
  • Calculus 2
    • 3D Coordinates and Vectors
    • Vectors and Vector Operations
    • Lines and Planes in Space (3D)
    • Partial Derivatives
    • Optimization Problems (Maxima/Minima) in Multivariable Functions
    • Gradient Vectors
  • Engineering Mathematics
    • Laplace Transform
  • Electrical & electronics Eng
    • Resistor
      • Series Resistors
      • Parallel Resistors
    • Nodal Analysis
      • Example 1
      • Example 2
    • Transient State
      • RC Circuit Equations in the s-Domain
      • RL Circuit Equations in the s-Domain
      • LC Circuit Equations in the s-Domain
      • Series RLC Circuit with DC Source
  • Computer Networking
    • Fundamental
      • IPv4 Addressing
      • Network Diagnostics
  • Cybersecurity
    • Classical Ciphers
      • Caesar Cipher
      • Affine Cipher
      • Atbash Cipher
      • Vigenère Cipher
      • Gronsfeld Cipher
      • Alberti Cipher
      • Hill Cipher
Powered by GitBook
On this page
  • Mathematical Formula:
  • Numerical Example:
  • Python Code: Step-by-Step Parallel Resistance Calculator
  • Keywords
  1. Electrical & electronics Eng
  2. Resistor

Parallel Resistors

Nerd Cafe

PreviousSeries ResistorsNextNodal Analysis

Last updated 1 month ago

In parallel circuits, resistors are connected such that they share both terminals. In this configuration, the voltage across each resistor is the same, but currents can vary.

Mathematical Formula:

If you have n resistors connected in parallel:

1Req=1R1+1R2+...+1Rn\frac{1}{R_{eq}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+...+\frac{1}{R_{n}}Req​1​=R1​1​+R2​1​+...+Rn​1​

Where:

  • RReq​: equivalent or total resistance

  • R1,R2,…,Rn​: individual resistances

For 2 resistors only:

Req=R1.R2R1+R2R_{eq}=\frac{R_{1}.R_{2}}{R_{1}+R_{2}}Req​=R1​+R2​R1​.R2​​

Numerical Example:

Let’s calculate the equivalent resistance of these resistors in parallel:

  • R1=10Ω

  • R2​=20Ω

  • R3=30Ω

Using the formula:

1Req=110+120+130=0.1+0.05+0.0333=0.1833⇒Req=10.1833≈5.45Ω\frac{1}{R_{eq}}=\frac{1}{10}+\frac{1}{20}+\frac{1}{30}=0.1+0.05+0.0333=0.1833\Rightarrow R_{eq}=\frac{1}{0.1833}≈5.45ΩReq​1​=101​+201​+301​=0.1+0.05+0.0333=0.1833⇒Req​=0.18331​≈5.45Ω

Python Code: Step-by-Step Parallel Resistance Calculator

def calculate_parallel_resistance():
    # Step 1: Ask user how many resistors are in parallel
    num = int(input("Enter the number of resistors in parallel: "))

    # Step 2: Initialize list to store resistors
    resistors = []

    # Step 3: Input resistor values
    for i in range(num):
        value = float(input(f"Enter value of resistor R{i+1} (in ohms): "))
        resistors.append(value)

    # Step 4: Calculate equivalent resistance using reciprocal sum
    reciprocal_sum = 0
    for R in resistors:
        reciprocal_sum += 1 / R

    if reciprocal_sum == 0:
        print("Error: Division by zero!")
        return

    Req = 1 / reciprocal_sum

    # Step 5: Show results
    print(f"\nResistor values: {resistors}")
    print(f"Equivalent parallel resistance: {Req:.4f} ohms")

# Run the function
calculate_parallel_resistance()

Output:

Enter the number of resistors in parallel:  3
Enter value of resistor R1 (in ohms):  10
Enter value of resistor R2 (in ohms):  20
Enter value of resistor R3 (in ohms):  30

Resistor values: [10.0, 20.0, 30.0]
Equivalent parallel resistance: 5.4545 ohms

Keywords

parallel resistors, equivalent resistance, Ohm's law, resistor network, parallel circuit, total resistance, reciprocal formula, resistor calculation, electrical circuits, parallel connection, resistance in parallel, current distribution, voltage across resistors, parallel resistance formula, circuit analysis, resistor value input, Python code, resistance computation, electronics basics, electrical engineering, nerd cafe