Type Conversion
Nerd Cafe
What is Type Conversion in Python?
Type Conversion is the process of converting the data from one data type to another.
There are two types of type conversion:
Implicit Type Conversion – Python automatically converts.
Explicit Type Conversion – You manually convert.
Why It’s Important in Machine Learning?
In machine learning, you:
Read data from files (like CSVs) – everything might be a string.
Need to feed numbers (not strings) into models.
Often convert data types to fit into numpy arrays, pandas DataFrames, or scikit-learn models.
1. Implicit Type Conversion (Automatic by Python)
Python automatically converts smaller data types to larger data types during operations.
Example:
Notes:
int + float
=float
Useful in calculations – Python promotes to the higher precision type.
2. Explicit Type Conversion (Manual by You)
You manually convert using functions like:
int()
Integer
float()
Float
str()
String
bool()
Boolean
list()
List
Real-world Example in Machine Learning:
You read CSV data, and you get this:
But ML models need numeric types:
3. Practical Examples of int()
, float()
, str()
, bool()
int()
, float()
, str()
, bool()
Convert String to Integer
But this will fail:
Solution:
Convert String to Float
Convert Number to String
Convert Boolean
Note: Empty string or zero = False
. Everything else = True
.
Use Case in Machine Learning: pandas
pandas
Important: Use .astype()
to convert entire pandas column.
Type Conversion in NumPy
Example Project: Cleaning Data for ML
Tip: Check Before Converting
Always check the type before and after conversion:
Summary Cheat Sheet
ML Case You’ll Use Often
Data from CSV as strings
int()
, float()
Encode categorical features
str
to int
(LabelEncoder
)
Convert labels to booleans
str
→ bool()
Pandas columns conversion
.astype(dtype)
NumPy array conversion
astype(dtype)
Keywords
type conversion
, python casting
, implicit conversion
, explicit conversion
, int()
, float()
, str()
, bool()
, list()
, tuple()
, data preprocessing
, machine learning
, pandas astype
, numpy astype
, data cleaning
, csv parsing
, type checking
, value error
, string to number
, boolean conversion
, nerd cafe
Last updated