Proof of Linear Regression Formulas

Nerd Cafe

Goal: Find The Best Fit Line

We want to model a linear relationship between variables:

yi^=mxi+b\hat{y_{i}}=mx_{i}+b

Where:

  • yi^\hat{y_{i}} is the predicted value,

  • xix_{i} is the observed input (independent variable),

  • yiy_{i}​ is the actual output (dependent variable),

  • mm is the slope,

  • bb is the intercept.

Objective: Minimize the Total Squared Error

The error (residual) for each point is:

ei=yiyi^=yi(mxi+b)e_{i}=y_{i}-\hat{y_{i}}=y_{i}-(mx_{i}+b)

We want to minimize the sum of squared errors:

E=i=1n(yi(mxi+b))2E=\sum_{i=1}^{n}(y_{i}-(mx_{i}+b))^{2}

Step 1: Minimize Error Function (E)

We treat EE as a function of mm and bb :

E(m,b)=i=1n(yimxib)2E(m,b)=\sum_{i=1}^{n}(y_{i}-mx_{i}-b)^{2}

To minimize EE, take partial derivatives of EE with respect to mm and bb, and set them to zero.

Step 2: Partial Derivative with Respect to m

Em=mi=1n(yimxib)2\frac{\partial E}{\partial m}=\frac{\partial }{\partial m}\sum_{i=1}^{n}(y_{i}-mx_{i}-b)^{2}

Use the chain rule:

=i=1n(2)(xi)(yimxib)=2i=1nxi(yimxib)=\sum_{i=1}^{n}(2)(-x_{i})(y_{i}-mx_{i}-b)=-2\sum_{i=1}^{n}x_{i}(y_{i}-mx_{i}-b)

Set this derivative to 0:

2i=1nxi(yimxib)=0i=1nxi(yimxib)=0        (1)-2\sum_{i=1}^{n}x_{i}(y_{i}-mx_{i}-b)=0\Rightarrow \sum_{i=1}^{n}x_{i}(y_{i}-mx_{i}-b)=0\;\;\;\;(1)

Step 3: Partial Derivative with Respect to 𝑏

Eb=bi=1n(yimxib)2\frac{\partial E}{\partial b}=\frac{\partial }{\partial b}\sum_{i=1}^{n}(y_{i}-mx_{i}-b)^{2}

Use the chain rule:

i=1n(2)(yimxib)(1)=2i=1n(yimxib)\sum_{i=1}^{n}(2)(y_{i}-mx_{i}-b)(-1)=-2\sum_{i=1}^{n}(y_{i}-mx_{i}-b)

Set this to zero:

i=1n(yimxib)=0        (2)\sum_{i=1}^{n}(y_{i}-mx_{i}-b)=0\;\;\;\;(2)

Step 4: Solve the System of Equations

Equation (2):

i=1n(yimxib)=0i=1nyimi=1nxinb=0b=i=1nyimi=1nxin\sum_{i=1}^{n}(y_{i}-mx_{i}-b)=0\Rightarrow \sum_{i=1}^{n}y_{i}-m\sum_{i=1}^{n}x_{i}-nb=0\Rightarrow b=\frac{\sum_{i=1}^{n}y_{i}-m\sum_{i=1}^{n}x_{i}}{n}

Plug last into (1):

Equation (1) becomes:

xiyimxi2bxi=0\sum_{}^{}x_{i}y_{i}-m\sum_{}^{}x_{i}^{2}-b\sum_{}^{}x_{i}=0

Substitute 𝑏 from equation (3):

xiyimxi2(yimxin)xi=0\sum_{}^{}x_{i}y_{i}-m\sum_{}^{}x_{i}^{2}-(\frac{\sum_{}^{}y_{i}-m\sum_{}^{}x_{i}}{n})\sum_{}^{}x_{i}=0

Multiply the right-hand term:

xiyimxi2xiyin+m(xi)2n=0\sum_{}^{}x_{i}y_{i}-m\sum_{}^{}x_{i}^{2}-\frac{\sum_{}^{}x_{i}\sum_{}^{}y_{i}}{n}+m\frac{(\sum_{}^{}x_{i})^{2}}{n}=0

Now collect terms with 𝑚 together and simplify:

m((xi)2nxi2)=(xi)(yi)nxiyim(\frac{\left( \sum_{}^{}x_{i} \right)^{2}}{n}-\sum_{}x_{i}^{2})=\frac{(\sum_{}^{}x_{i})(\sum_{}^{}y_{i})}{n}-\sum_{}^{}x_{i}y_{i}

Multiply both sides by −1 to clean the left-hand term:

m=nxiyixiyinxi2(xi)2m=\frac{n\sum_{}^{}x_{i}y_{i}-\sum_{}^{}x_{i}\sum_{}^{}y_{i}}{n\sum_{}^{}x_{i}^{2}-(\sum_{}^{}x_{i})^{2}}

Final Formulas

Slope:

m=nxiyixiyinxi2(xi)2m=\frac{n\sum_{}^{}x_{i}y_{i}-\sum_{}^{}x_{i}\sum_{}^{}y_{i}}{n\sum_{}^{}x_{i}^{2}-(\sum_{}^{}x_{i})^{2}}

Intercept:

b=i=1nyimi=1nxinb=\frac{\sum_{i=1}^{n}y_{i}-m\sum_{i=1}^{n}x_{i}}{n}

Last updated