Python Encyclopedia for Academics
  • Course Outline
  • Artificial Intelligence
    • Data Science Foundation
      • Python Programming
        • Introduction and Basics
          • Variables
          • Print Function
          • Input From User
          • Data Types
          • Type Conversion
        • Operators
          • Arithmetic Operators
          • Relational Operators
          • Bitwise Operators
          • Logical Operators
          • Assignment Operators
          • Compound Operators
          • Membership Operators
          • Identity Operators
      • Numpy
        • Vectors, Matrix
        • Operations on Matrix
        • Mean, Variance, and Standard Deviation
        • Reshaping Arrays
        • Transpose and Determinant of Matrix
      • Pandas
        • Series and DataFrames
        • Slicing, Rows, and Columns
        • Operations on DataFrames
        • Different wayes to creat DataFrame
        • Read, Write Operations with CSV files
      • Matplotlib
        • Graph Basics
        • Format Strings in Plots
        • Label Parameters, Legend
        • Bar Chart, Pie Chart, Histogram, and Scatter Plot
  • Machine Learning Algorithms
    • Regression Analysis In ML
      • Regression Analysis in Machine Learning
      • Proof of Linear Regression Formulas
      • Simple Linear Regression Implementation
      • Multiple Linear Regression
      • Advertising Dataset Example
      • Bike Sharing Dataset
      • Wine Quality Dataset
      • Auto MPG Dataset
    • Classification Algorithms in ML
      • Proof of Logistic Regression
      • Simplified Mathematical Proof of SVM
      • Iris Dataset
  • Machine Learning Laboratory
    • Lab 1: Titanic Dataset
      • Predicting Survival on the Titanic with Machine Learning
    • Lab 2: Dow Jones Index Dataset
      • Dow Jones Index Predictions Using Machine Learning
    • Lab 3: Diabetes Dataset
      • Numpy
      • Pandas
      • Matplotlib
      • Simple Linear Regression
      • Simple Non-linear Regression
      • Performance Matrix
      • Preprocessing
      • Naive Bayes Classification
      • K-Nearest Neighbors (KNN) Classification
      • Decision Tree & Random Forest
      • SVM Classifier
      • Logistic Regression
      • Artificial Neural Network
      • K means Clustering
    • Lab 4: MAGIC Gamma Telescope Dataset
      • Classification in ML-MAGIC Gamma Telescope Dataset
    • Lab 5: Seoul Bike Sharing Demand Dataset
      • Regression in ML-Seoul Bike Sharing Demand Dataset
    • Lab 6: Medical Cost Personal Datasets
      • Predict Insurance Costs with Linear Regression in Python
    • Lab 6: Predict The S&P 500 Index With Machine Learning And Python
      • Predict The S&P 500 Index With Machine Learning And Python
  • Artificial Neural Networks
    • Biological Inspiration vs. Artificial Neurons
    • Review linear algebra and calculus essentials for ANNs
    • Activation Function
  • Mathematics
    • Pre-Calculus
      • Factorials
      • Roots of Polynomials
      • Complex Numbers
      • Polar Coordinates
      • Graph of a Function
    • Calculus 1
      • Limit of a Function
      • Derivative of Function
      • Critical Points
      • Indefinite Integrals
  • Calculus 2
    • 3D Coordinates and Vectors
    • Vectors and Vector Operations
    • Lines and Planes in Space (3D)
    • Partial Derivatives
    • Optimization Problems (Maxima/Minima) in Multivariable Functions
    • Gradient Vectors
  • Engineering Mathematics
    • Laplace Transform
  • Electrical & electronics Eng
    • Resistor
      • Series Resistors
      • Parallel Resistors
    • Nodal Analysis
      • Example 1
      • Example 2
    • Transient State
      • RC Circuit Equations in the s-Domain
      • RL Circuit Equations in the s-Domain
      • LC Circuit Equations in the s-Domain
      • Series RLC Circuit with DC Source
  • Computer Networking
    • Fundamental
      • IPv4 Addressing
      • Network Diagnostics
  • Cybersecurity
    • Classical Ciphers
      • Caesar Cipher
      • Affine Cipher
      • Atbash Cipher
      • Vigenère Cipher
      • Gronsfeld Cipher
      • Alberti Cipher
      • Hill Cipher
Powered by GitBook
On this page
  • 1. What Are Series Resistors?
  • 2. Formula for Series Resistors
  • 3. Example Problem (Manual Calculation)
  • 4. Python Code Example
  • 5. Visualization (Optional)
  • Keywords
  1. Electrical & electronics Eng
  2. Resistor

Series Resistors

Nerd Cafe

1. What Are Series Resistors?

When resistors are connected end-to-end (in a single path), they are said to be connected in series.

Key Characteristics:

  • Same Current flows through all resistors.

  • Voltage is divided across the resistors.

  • Total resistance is the sum of all individual resistances.

2. Formula for Series Resistors

Let’s say we have n resistors:

R1,R2,R3,...,RnR_{1},R_{2},R_{3},...,R_{n}R1​,R2​,R3​,...,Rn​

Total Resistance:

RTotal=R1+R2+R3+...+RnR_{Total}=R_{1}+R_{2}+R_{3}+...+R_{n}RTotal​=R1​+R2​+R3​+...+Rn​

Current in Circuit (Ohm's Law):

I=VRTotalI=\frac{V}{R_{Total}}I=RTotal​V​

Voltage Across Each Resistor:

Vi=Ri×IV_{i}=R_{i}\times IVi​=Ri​×I

3. Example Problem (Manual Calculation)

Example 1:

You have 3 resistors in series:

  • R1=10 Ω

  • R2=20 Ω

  • R3=30 Ω

And the total voltage supplied is 𝑉 = 60 V .

1. Find total resistance:

Rtotal=10+20+30=60ΩR_{total}=10+20+30=60ΩRtotal​=10+20+30=60Ω
  1. Find the current:

I=VRTotal=6060=1    (A)I=\frac{V}{R_{Total}}=\frac{60}{60}=1\;\;(A)I=RTotal​V​=6060​=1(A)
  1. Voltage across each resistor:

V1=10×1=10    V2=20×1=20    V3=30×1=30V_{1}=10\times 1=10 \;\;V_{2}=20\times 1=20\;\;V_{3}=30\times 1=30V1​=10×1=10V2​=20×1=20V3​=30×1=30

4. Python Code Example

Let’s now simulate this using Python.

Python Code:

# Series resistor circuit calculator

# Given resistor values in ohms
resistors = [10, 20, 30]
# Total voltage supplied (Volts)
V_total = 60

# Calculate total resistance
R_total = sum(resistors)

# Calculate current using Ohm's law
I = V_total / R_total

# Calculate voltage across each resistor
voltages = [I * R for R in resistors]

# Display results
print(f"Resistor values: {resistors} ohms")
print(f"Total Resistance: {R_total} ohms")
print(f"Total Current: {I:.2f} A")
print("Voltages across each resistor:")
for idx, V in enumerate(voltages, start=1):
    print(f"  V{idx} = {V:.2f} V")

Output

Resistor values: [10, 20, 30] ohms
Total Resistance: 60 ohms
Total Current: 1.00 A
Voltages across each resistor:
  V1 = 10.00 V
  V2 = 20.00 V
  V3 = 30.00 V

5. Visualization (Optional)

Let’s plot the voltage drop:

import matplotlib.pyplot as plt

def plot_voltage_drops(resistors, V_total):
    R_total = sum(resistors)
    I = V_total / R_total
    voltages = [I * R for R in resistors]

    plt.figure(figsize=(8, 4))
    plt.bar([f'R{i+1}' for i in range(len(resistors))], voltages, color='skyblue')
    plt.title('Voltage Drop Across Series Resistors')
    plt.ylabel('Voltage (V)')
    plt.grid(True, axis='y')
    plt.show()

# Example
plot_voltage_drops([10, 20, 30], 60)

Output

Keywords

series resistors, total resistance, ohm's law, voltage drop, current flow, resistors in series, electrical circuit, circuit analysis, resistance calculation, voltage division, current calculation, resistor network, Python circuit simulation, series circuit, voltage across resistors, total voltage, resistive circuit, circuit formula, electric current, electronics basics, nerd cafe

PreviousResistorNextParallel Resistors

Last updated 1 month ago