An RL circuit consists of a resistor (R) and an inductor (L) connected either in series or in parallel. These components resist and store energy in different ways.
2. Time-Domain Equations of an RL Series Circuit
Kirchhoff’s Voltage Law (KVL):
For a series RL circuit with input voltage v(t), resistor R, and inductor L:
v(t)=vR(t)+vL(t)
Using Ohm’s law:
v(t)=Ri(t)+Ldtdi(t)
3. Transform to s-Domain (Laplace Transform)
Laplace Transform Rules:
L{v(t)}=L{Ri(t)+Ldtdi(t)}
So,
Vs=RI(s)+L(sI(s)−i(0−))=I(s)(Ls+1)−Li(0−)
If the initial current 𝑖 (0−) =0, this simplifies to:
V(s)=(R+sL)I(s)
Or:
I(s)=R+sLV(s)
4. Example Problem (Step Input)
Let:
R=10 Ω
L=1 HL
v(t)=5⋅u(t) (step function)
i(0)=0
Laplace of 𝑣(𝑡) = 5𝑢( 𝑡 ):
V(s)=s5
Solve for 𝐼(𝑠):
I(s)=10+s.1s5=s(10+s)5
Partial Fraction Decomposition:
s(10+s)5=sA+s+10B
Multiply both sides:
5=A(s+10)+Bs=(A+B)s+10A
Solve:
ifs=0⇒A=0.5ifs=−10⇒B=−0.5
So:
i(t)=21−21e−10t
5. Python Code Example
We’ll use sympy for symbolic math and matplotlib for plotting.