RL Circuit Equations in the s-Domain

Nerd Cafe

1. What Is an RL Circuit?

An RL circuit consists of a resistor (R) and an inductor (L) connected either in series or in parallel. These components resist and store energy in different ways.

2. Time-Domain Equations of an RL Series Circuit

Kirchhoff’s Voltage Law (KVL):

For a series RL circuit with input voltage v(t), resistor R, and inductor L:

v(t)=vR(t)+vL(t)v(t)=v_{R}(t)+v_{L}(t)

Using Ohm’s law:

v(t)=Ri(t)+Ldi(t)dtv(t)=Ri(t)+L\frac{d i(t)}{dt}

3. Transform to s-Domain (Laplace Transform)

Laplace Transform Rules:

L{v(t)}=L{Ri(t)+Ldi(t)dt}L\left\{ v(t) \right\}=L\left\{ Ri(t)+L\frac{d i(t)}{dt} \right\}

So,

Vs=RI(s)+L(sI(s)i(0))=I(s)(Ls+1)Li(0)V_{s}=RI(s)+L\left( sI(s)-i(0^{-}) \right)=I(s)\left( Ls+1 \right)-Li(0^{-})

If the initial current 𝑖 (0) =0, this simplifies to:

V(s)=(R+sL)I(s)V(s)=(R+sL)I(s)

Or:

I(s)=V(s)R+sLI(s)=\frac{V(s)}{R+sL}

4. Example Problem (Step Input)

Let:

  • R=10 Ω

  • L=1 HL

  • v(t)=5⋅u(t) (step function)

  • i(0)=0

Laplace of 𝑣(𝑡) = 5𝑢( 𝑡 ):

V(s)=5sV(s)=\frac{5}{s}

Solve for 𝐼(𝑠):

I(s)=5s10+s.1=5s(10+s)I(s)=\frac{\frac{5}{s}}{10+s.1}=\frac{5}{s\left( 10+s \right)}

Partial Fraction Decomposition:

5s(10+s)=As+Bs+10\frac{5}{s\left( 10+s \right)}=\frac{A}{s}+\frac{B}{s+10}

Multiply both sides:

5=A(s+10)+Bs=(A+B)s+10A5=A(s+10)+Bs=(A+B)s+10A

Solve:

if    s=0A=0.5if    s=10B=0.5if\;\;s=0\Rightarrow A=0.5\\ if\;\;s=-10\Rightarrow B=-0.5

So:

i(t)=1212e10ti(t)=\frac{1}{2}-\frac{1}{2}e^{-10t}

5. Python Code Example

We’ll use sympy for symbolic math and matplotlib for plotting.

Output

Kewords

RL circuit,s-domain,laplace transform,resistor,inductor,time-domain,current response,step input,transfer function,kirchhoff’s voltage law,KVL,initial condition,partial fraction,inverse laplace,symbolic math,python simulation,frequency domain,differential equations,transient response,electrical engineering, nerd cafe

Last updated