RC Circuit Equations in the s-Domain

Nerd Cafe

1. What is the s-domain?

The s-domain is the domain after applying the Laplace Transform. It’s widely used in circuit analysis because it converts differential equations to algebraic equations, which are easier to handle.

The Laplace variable s is defined as:

s=σ+jωs=\sigma+j\omega

2. RC Circuit Basics in Time Domain

Components:

  • R = Resistance (Ohms)

  • C = Capacitance (Farads)

Time-domain differential equation:

For a series RC circuit with input Vin and output across the capacitor Vout:

Vin(t)=VR(t)+VC(t)VR(t)=R.i(t)    and    VC(t)=1Ci(t)dtV_{in}(t)=V_{R}(t)+V_{C}(t) \\ \\ V_{R}(t)=R.i(t)\;\;and\;\;V_{C}(t)=\frac{1}{C}\int_{}^{}i(t)dt

Using:

i(t)=CdVC(t)dti(t)=C\frac{dV_{C}(t)}{dt}

We get:

Vin=RCdVC(t)dt+VC(t)V_{in}=RC\frac{dV_{C}(t) }{dt}+V_{C}(t)

3. Laplace Transform of RC Circuit

Apply Laplace Transform:

L{Vin}=L{RCdVC(t)dt+VC(t)}=RC×L{dVC(t)dt}+L{VC(t)}L\left\{ V_{in} \right\}=L\left\{ RC\frac{dV_{C}(t) }{dt}+V_{C}(t) \right\}=RC\times L\left\{ \frac{d V_{C}(t)}{dt} \right\}+L\left\{ V_{C}(t) \right\}

So:

Vin(s)=RC(sVC(s)VC(0))+VC(s)V_{in}(s)=RC\left( sV_{C}(s)-V_{C}(0) \right)+V_{C}(s)

If initial capacitor voltage 𝑉𝐶(0) = 0 :

Vin(s)=(RCs+1)VC(s)V_{in}(s)=(RCs+1)V_{C}(s)

Transfer Function:

H(s)=Vout(s)Vin(s)=1RCs+1H(s)=\frac{V_{out}(s)}{V_{in}(s)}=\frac{1}{RCs+1}

4. Solving RC Circuit in s-domain

Given any input Vin(s), the output is:

Vout(s)=H(s)Vin(s)V_{out}(s)=H(s)V_{in}(s)

Use inverse Laplace to get 𝑉𝑜𝑢𝑡( 𝑡 ).

5. Python Implementation (Symbolic & Numeric)

We’ll use SymPy for symbolic analysis and SciPy/Matplotlib for numerical/graphical output.

Output

Vin(s)RCs+1\frac{V_{in}(s)}{RCs+1}

6. Example : Step Response of RC Circuit

Input:

Vin(t)=u(t)u(t)=1sV_{in}(t)=u(t)\Rightarrow u(t)=\frac{1}{s}

Output:

Vout(s)=1RCs+1×1s=1s(RCs+1)V_{out}(s)=\frac{1}{RCs+1}\times \frac{1}{s}=\frac{1}{s(RCs+1)}

Inverse Laplace:

Use partial fractions:

1s(RCs+1)=1s1s+1RCVout(t)=1etRC    for    t0\frac{1}{s(RCs+1)}=\frac{1}{s}-\frac{1}{s+\frac{1}{RC}}\Rightarrow V_{out}(t)=1-e^{-\frac{t}{RC}} \;\;for \; \;t\ge 0

Python Code for Step Response (Numeric)

Output

Keywords

RC circuit, s-domain, Laplace transform, transfer function, step response, sinusoidal input, time domain, frequency domain, capacitor voltage, resistor current, symbolic math, SymPy, SciPy, Python simulation, inverse Laplace, first-order circuit, circuit analysis, transient response, electrical engineering, control systems, nerd cafe

Last updated