The Laplace Transform is a powerful tool used in engineering, physics, and mathematics to convert time-domain functions (typically functions of t) into frequency-domain functions (functions of s).
Definition:
The Laplace Transform of a function f(t) is defined as:
L{f(t)}=∫0∞e−stf(t)dt
Where:
f(t): time-domain function
F(s): Laplace-transformed function
s: complex frequency variable (can be s=σ+jω)
2. Why Use the Laplace Transform?
Converts differential equations into algebraic equations.
Helps in solving initial value problems.
Very useful in control systems, circuits, and signal processing.
3. Common Laplace Transform Pairs
Example 1
f(t)=1
A. Step-by-Step Solution
The Laplace Transform of a function f(t) is defined as:
L{f(t)}=∫0∞e−stf(t)dt
So, for 𝑓 (𝑡) = 1 :
L{1}=∫0∞e−stdt
This is a basic exponential integral. Let's evaluate it:
∫0∞e−stdt=⌊−se−st⌋0∞
As we know:
At 𝑡 → ∞ , 𝑒 − 𝑠 𝑡 → 0 (since 𝑠 > 0)
At 𝑡=0 , 𝑒−𝑠𝑡=1
So:
L{1}=(−s1×0)−(−s1×1)=s1
B. Python Verification
from sympy import symbols, laplace_transform
# Define variables
t, s = symbols('t s')
# Define the function
f_t = 1
# Compute Laplace Transform
F_s = laplace_transform(f_t, t, s)
print("Laplace Transform of f(t)=1:", F_s)
C. Output:
Laplace Transform of f(t)=1: (1/s, 0, True)
Example 2
f(t)=t
A. Step-by-Step Solution
Substitute 𝑓(𝑡)=𝑡:
L{t}=∫0∞e−sttdt
Let’s choose:
u=t⇒du=dtdv=e−stdt⇒v=−s1e−st
Apply the formula:
∫0∞te−stdt=[−ste−st]0∞+∫0∞s1e−stdt
First term:
[−ste−st]0∞=0
Second term:
∫0∞s1e−stdt=s1⌊−se−st⌋0∞=s1(0−(−s1))=s21
B. Python Code Verification
from sympy import symbols, laplace_transform
# Define variables
t, s = symbols('t s')
# Define the function
f_t = t
# Compute Laplace Transform
F_s = laplace_transform(f_t, t, s)
print("Laplace Transform of f(t)=t:", F_s)
C. Output
Laplace Transform of f(t)=1: (s**(-2), 0, True)
Example 3
Let’s now mathematically calculate the Laplace Transform of:
f(t)=t2
From the definition of Laplace Transform:
L{f(t)}=∫0∞e−stf(t)dt
Substitute 𝑓(𝑡)=𝑡2:
L{f(t)}=∫0∞e−stt2dt
A. Step-by-Step Integration
We use integration by parts, or more efficiently, we use the gamma function property for powers of ttt.