Laplace Transform

Nerd Cafe

1. What is the Laplace Transform?

The Laplace Transform is a powerful tool used in engineering, physics, and mathematics to convert time-domain functions (typically functions of t) into frequency-domain functions (functions of s).

Definition:

The Laplace Transform of a function f(t) is defined as:

L{f(t)}=0estf(t)dtL\left\{ f(t) \right\}=\int_{0}^{\infty }e^{-st}f(t)dt

Where:

  • f(t): time-domain function

  • F(s): Laplace-transformed function

  • s: complex frequency variable (can be s=σ+jω)

2. Why Use the Laplace Transform?

  • Converts differential equations into algebraic equations.

  • Helps in solving initial value problems.

  • Very useful in control systems, circuits, and signal processing.

3. Common Laplace Transform Pairs

Example 1

f(t)=1f(t)=1

A. Step-by-Step Solution

The Laplace Transform of a function f(t) is defined as:

L{f(t)}=0estf(t)dtL\left\{ f(t) \right\}=\int_{0}^{\infty }e^{-st}f(t)dt

So, for 𝑓 (𝑡) = 1 :

L{1}=0estdtL\left\{ 1 \right\}=\int_{0}^{\infty }e^{-st}dt

This is a basic exponential integral. Let's evaluate it:

0estdt=ests0\int_{0}^{\infty }e^{-st}dt=\left\lfloor \frac{e^{-st}}{-s} \right\rfloor^{\infty }_{0}

As we know:

  • At 𝑡 → ∞ , 𝑒 − 𝑠 𝑡 → 0 (since 𝑠 > 0)

  • At 𝑡=0 , 𝑒−𝑠𝑡=1

So:

L{1}=(1s×0)(1s×1)=1sL\left\{ 1 \right\}=(-\frac{1}{s}\times 0)-(-\frac{1}{s}\times 1)=\frac{1}{s}

B. Python Verification

C. Output:

Example 2

f(t)=tf(t)=t

A. Step-by-Step Solution

Substitute 𝑓(𝑡)=𝑡:

L{t}=0esttdtL\left\{ t \right\}=\int_{0}^{\infty }e^{-st}tdt

Let’s choose:

u=tdu=dtdv=estdtv=1sest\begin{matrix} u=t⇒du=dt \\ \\ dv=e^{-st}dt\Rightarrow v=-\frac{1}{s}e^{-st} \end{matrix}

Apply the formula:

0testdt=[tsest]0+01sestdt\int_{0}^{\infty }te^{-st}dt=\left[ -\frac{t}{s}e^{-st} \right]_{0}^{\infty }+\int_{0}^{\infty }\frac{1}{s}e^{-st}dt

First term:

[tsest]0=0\left[ -\frac{t}{s}e^{-st} \right]_{0}^{\infty }=0

Second term:

01sestdt=1sests0=1s(0(1s))=1s2\int_{0}^{\infty }\frac{1}{s}e^{-st}dt=\frac{1}{s}\left\lfloor \frac{e^{-st}}{-s} \right\rfloor_{0}^{\infty }=\frac{1}{s}(0-(-\frac{1}{s})) =\frac{1}{s^{2}}

B. Python Code Verification

C. Output

Example 3

Let’s now mathematically calculate the Laplace Transform of:

f(t)=t2f(t)=t^{2}

From the definition of Laplace Transform:

L{f(t)}=0estf(t)dtL\left\{ f(t) \right\}=\int_{0}^{\infty }e^{-st}f(t)dt

Substitute 𝑓(𝑡)=𝑡2:

L{f(t)}=0estt2dtL\left\{ f(t) \right\}=\int_{0}^{\infty }e^{-st}t^{2}dt

A. Step-by-Step Integration

We use integration by parts, or more efficiently, we use the gamma function property for powers of ttt.

But first, we’ll do it manually.

Let:

u=t2du=2tdtdv=estdtv=1sest\begin{matrix} u=t^{2}\Rightarrow du=2tdt \\ \\ dv=e^{-st}dt\Rightarrow v=-\frac{1}{s}e^{-st} \end{matrix}

So:

t2estdt=1st2est+2tsestdt\int_{}^{}t^{2}e^{-st}dt=-\frac{1}{s}t^{2}e^{-st}+\int_{}^{}\frac{2t}{s}e^{-st}dt

Now let:

u=tdu=dtdv=estdtv=1sest\begin{matrix} u=t\Rightarrow du=dt \\ \\ dv=e^{-st}dt\Rightarrow v=-\frac{1}{s}e^{-st} \end{matrix}

So:

testdt=tsest+1sestdt=tsest1s2est\int_{}^{}te^{-st}dt=-\frac{t}{s}e^{-st}+\frac{1}{s}\int_{}^{}e^{-st}dt=-\frac{t}{s}e^{-st}-\frac{1}{s^{2}}e^{-st}

Now plug everything back in:

0t2estdt=[t2sest]0+[2s(tsest1sest)]0\int_{0}^{\infty }t^{2}e^{-st}dt=\left[ -\frac{t^{2}}{s} e^{-st}\right]_{0}^{\infty }+\left[ \frac{2}{s}(-\frac{t}{s}e^{-st}-\frac{1}{s}e^{-st}) \right]_{0}^{\infty }

All terms vanish at t→∞, and at t=0, all t-dependent terms are zero, but the constant exponential part survives. So we are left with:

L{t2}=2t3    ,    for    s>0L\left\{ t^{2} \right\}=\frac{2}{t^{3}}\;\;, \;\; for\;\;s>0

B. General Rule (for future use):

L{tn}=n!tn+1    ,    for    s>0L\left\{ t^{n} \right\}=\frac{n!}{t^{n+1}}\;\;, \;\; for\;\;s>0

So for 𝑛 = 2:

L{t2}=2t3    ,    for    s>0L\left\{ t^{2} \right\}=\frac{2}{t^{3}}\;\;, \;\; for\;\;s>0

C. Python Verification (SymPy)

D. Output:

Example 4

Let's now mathematically compute the Laplace Transform of:

f(t)=ea.tf(t)=e^{a.t}

From the definition of Laplace Transform:

L{f(t)}=0estf(t)dtL\left\{ f(t) \right\}=\int_{0}^{\infty }e^{-st}f(t)dt

Substitute 𝑓(𝑡)=eat:

L{ea.t}=0esteatdtL\left\{ e^{a.t} \right\}=\int_{0}^{\infty }e^{-st}e^{at}dt

A. Step-by-Step Integration

We now compute:

0esteatdt=0e(as)tdt\int_{0}^{\infty }e^{-st}e^{at}dt=\int_{0}^{\infty }e^{(a-s)t}dt

B. Condition:

  • Converges if s>a, because we need (a−s)<0 so the exponential decays.

C. Integrate

0e(as)tdt=1ase(as)t\int_{0}^{\infty }e^{(a-s)t}dt=\frac{1}{a-s}e^{(a-s)t}

D. Apply limits from 0 to ∞ .

[1ase(as)t]0=01as=1sa\left[ \frac{1}{a-s}e^{(a-s)t} \right]_{0}^{\infty }=0-\frac{1}{a-s}=\frac{1}{s-a}

E. Final Result:

L{eat}=1saL\left\{ e^{at} \right\}=\frac{1}{s-a}

F. Python Verification

G. Output:

Keywords

Laplace Transform, Laplace integral, exponential function, sine function, cosine function, transform table, Laplace of t², Laplace of e^at, Laplace of sin(at), Laplace definition, integration by parts, complex functions, convergence condition, Laplace properties, Laplace examples, Laplace rules, symbolic math, SymPy Laplace, Python Laplace, Laplace step-by-step, nerd cafe

Last updated