Limit of a Function

Nerd Cafe

Example 1

  • Limit:

limx2(3x+1)\lim_{x \to 2} (3x+1)
  • Solution:

3×(2)+1=73\times (2)+1=7
  • Python Code:

from sympy import symbols, limit

x = symbols('x')
expr = 3*x + 1
result = limit(expr, x, 2)
print(result)
  • Output:

Example 2

  • Limit:

limx0sin(x)x\lim_{x \to 0} \frac{sin(x)}{x}
  • Solution: Using Taylor Series

Use the Taylor expansion of sin(x) around 0:

sin(x)=xx33!+x55!...sin(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-...

So:

sin(x)x=xx33!+x55!...x=1x26+x4120...\frac{sin(x)}{x}=\frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-...}{x}=1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-...

Now take the limit:

limx0(1x26+x4120...)=1\lim_{x \to 0} \left( 1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-... \right)=1
  • Python Code:

  • Output:

Example 3

  • Limit:

limx1x21x1\lim_{x \to 1} \frac{x^{2}-1}{x-1}
  • Solution: Factor numerator:

x21x1=(x1)(x+1)x1=x+1limx1(x+1)=2\frac{x^{2}-1}{x-1}=\frac{(x-1)(x+1)}{x-1}=x+1\Rightarrow \lim_{x \to 1} (x+1)=2
  • Python Code:

  • Output:

Example 4

  • Limit:

limx01cos(x)x2\lim_{x \to 0} \frac{1-cos(x)}{x^{2}}
  • Solution: This is a known standard limit:

Expand cos⁡(𝑥) using Taylor series:

cos(x)=1x22!+x44!...cos(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-...

So:

1cos(x)=1(1x22!+x44!...)=x22!x44!+...1-cos(x)=1-\left( 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-... \right)=\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+...

Substitute into the limit:

limx0(1cos(x)x2)=limx0(x22!x44!+...x2)\lim_{x \to 0} \left( \frac{1-cos(x)}{x^{2}} \right)=\lim_{x \to 0} \left( \frac{\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+...}{x^{2}} \right)

Simplify the expression:

limx0(12!x24!+...)=12\lim_{x \to 0} \left( \frac{1}{2!}-\frac{x^{2}}{4!}+... \right)=\frac{1}{2}
  • Python Code:

  • Output:

Example 5

  • Limit:

limx5x2+52x2+7\lim_{x \to \infty } \frac{5x^{2}+5}{2x^{2}+7}
  • Solution:

limx5x2+52x2+7=limx5+5x22+7x2=52\lim_{x \to \infty } \frac{5x^{2}+5}{2x^{2}+7}=\lim_{x \to \infty } \frac{5+\frac{5}{x^{2}}}{2+\frac{7}{x^{2}}}=\frac{5}{2}
  • Python Code:

  • Output

Example 6

  • Limit:

limx0xx\lim_{x \to 0} \frac{x}{\left| x \right|}
  • Solution:

    • From left: −1

    • From right: 1

    • Left ≠ Right → Limit does not exist

  • Python Code:

  • Output

Keywords

limit, calculus, trigonometric limits, Taylor series, squeeze theorem, sin(x)/x, fundamental limit, L'Hôpital's rule, limit definition, mathematical proof, nerd cafe

Last updated